创建或修改目录:/www/wwwroot/104.219.215.234/data 失败!
NEWS! 招聘:接待各路硬人加盟课题组(2024.8.30):
接待有志于投身新一代半导体器件芯片与仪器作事的才俊加盟合作,提供解释/副解释/助明白释/博士后或扣问员系列等岗亭,在政府、学校、学院层面支合手力度下,课题组提供个性化科研平台培育经费,同期阐发责任事迹非凡奖励5~10万待遇!
基础政策待遇:
对于扣问生报考:
接待2025级履行、保研同学报考课题组硕、博扣问生!
课题组主要扣问地点包括(不局限于):
(1)新一代半导体氮化镓电子器件、可靠性物理以及模块技巧(物理、半导体、电路大要系统干系常识配景的优先);(2)第三代半导体智能感知、追思存储芯片与仪器制造技巧(物理、半导体、电路大要仪器干系常识配景的优先)。
备注:接待勤于想考、积极主动、乐于互助,满足悉力于完毕国度“双碳”办法、从事国产芯片国度紧要计谋需求地点的学生报考;课题组将提供一流的科研平台、丰厚的科研后果奖励以及海外化的学术雷同和一流企业责任推选契机。
学术雷同与合作:
2024年9月2日,新加坡国立大学Yung C. Liang解释率队来访指导,开展海外先进实验室安全培训、氮化镓磁传感技巧两场主题叙述,并开展合作调研
2024年4月15日,吉林大学张彤解释来访雷同指导,并作念柔性衬底传感器扣问与进展主题学术讲座
2024年3月9日,芯鉴半导体总司理闫大为博士来访雷同,并作念氮化镓可靠性测试与劣势检测主题学术讲座
2023年10月13日,中科院微电子所黄森扣问员来访雷同,并作念Si基GaN功率器件劣势干系可靠性问题扣问学术讲座
2023年9月29日,厦门大学吴雅苹解释来访雷同,并作念氮化物半导体自旋注入与自旋电子学器件哄骗主题学术讲座
2023年9月7日,南边科技大学刘召军解释来访雷同,并作念氮化镓micro-LED主题学术讲座
2023年7月24日,环球先进的宽禁带半导体AlN单晶衬底企业CEO吴亮博士来访雷同
2023年3月31日,举办“2023大连理工大学-新加坡国立大学宽禁带半导体学术推敲会”,会议由黄火林、梁永王人解释共同主合手
天然素人2023年3月30日,新国大梁永王人解释率队来访指导并开展合作调研
2023年3月28日,中科院半导体所陈良惠院士、韦欣扣问员来访指导
NEWS:
国度第三代半导体产业技妙策谋定约官网合手续刊载报导咱们的扣问责任
https://mp.weixin.qq.com/s/PF5YNU8EaUbyH9TFJlNDMg
https://mp.weixin.qq.com/s/eZtNlbL81hlBCItltok4iw
https://mp.weixin.qq.com/s/_1919GaQg38T8lbwxwmelw
https://mp.weixin.qq.com/s/ZGtBKEQ7z2KAvSeK_RMMGw
Congratulations !
1、祝颂孙楠同学荣获:辽宁省优秀博士毕业生(2024)
2、祝颂孙楠同学荣获:“英特尔奖学金”(2022)
3、祝颂孙仲豪同学荣获:大连理工大学优秀毕业生、辽宁省优秀博士毕业生、优秀博士做事榜样(2021)
4、祝颂张卉同学荣获:国度扣问生奖学金、大连理工大学优秀毕业生、大连市优秀毕业生(2021)
5、祝颂孙仲豪同学荣获:“英特尔奖学金”、大连理工大学“博士生学术之星”(每年全校仅10个)(2021)
6、祝颂李飞雨同学荣获:国度扣问生奖学金、大连理工大学优秀毕业生、大连市优秀毕业生(2020)
个东说念主简介:
黄火林, 现任大连理工大学光电工程与仪器科学学院解释、博导,入选地方高级次东说念主才霸术,担任省第三代半导体技巧改革中心主任、大连理工大学氮化镓电子器件改革团队发扬东说念主。曾在新加坡国立大学电机工程系责任多年,从事新一代氮化镓(GaN)半导体电子器件技巧拓荒,典型扣问后果是获取3V阈值电压和600~2000V耐压品级的常关型(增强型)功率器件,玄虚方针达到同期海外先进水平。现在指导团队(熟谙8东说念主/硕博扣问生50余东说念主),从事高可靠性氮化镓功率器件想象与制造以及新式传感器集成技巧扣问。在学术后果方面,永诀获取中国发明协会发明创业奖改革奖与中国轮回经济协会科学技巧奖二等奖以及大连理工大学学术后果奖一等奖(排行第一);在IEEE Electron Device Letters、IEEE Transactions on Power Electronics等畛域盛名期刊和紧要海外会议上发表学术论文逾越八十篇,手脚主要发起东说念主制定氮化镓器件技巧行业活动两项,恳求或授权好意思国/国内发明专利近五十项;近五年主合手国度级重心类课题、国度基金委技俩、省部级纵向和横向各级技俩或课题三十余项;担任国度基金委重心类/面上/联结等技俩、教悔部/多省科技厅技俩及东说念主才技俩(会评)评审大家。
课题组擅长技巧畛域:
氮化镓器件栅区低毁伤界面处理/界面态抵偿工艺、高/低介电常数介质助长技巧、新一代磁传感芯片集成技巧、E-mode(增强型)器件技巧、可靠性测试与模子、产业化HEMT器件想象与结构TCAD仿真优化
科研后果获奖及东说念主才培养:
1、中国发明协会发明创业奖改革奖二等奖,高性能第三代半导体磁传感器芯片要津技巧及哄骗,2023年
2、中国轮回经济协会科学技巧奖二等奖,漫衍式光伏电站玄虚效益普及的要津技巧及哄骗(GaN技巧在光伏行业的哄骗示范),2022年
3、大连理工大学-技巧改革学术后果奖一等奖,高性能磁传感器芯片与仪器,2022年
4、大连理工大学-具有科技前沿后劲和改动出路的科技后果奖二等奖,高性能第三代氮化镓功率器件止境制备技巧,2021年
5、大连理工大学优秀硕士论文指导熟谙,2021年
6、大连理工大学十大“博士生学术之星”优秀指导熟谙,2020年
7、大连理工大学年度事迹旁观优秀,2023年
课题组主合手科研技俩(2018-于今):
1、氮化镓工艺技巧(国度任务)
2、Si基GaN高效功率电子器件制备扣问(国度当然科学基金技俩重心类课题)
3、氮化镓自撑合手衬底大功率垂直结构场效应晶体管基础技巧扣问(国度当然科学基金技俩)
4、基于纵向短栅极沟说念结构的低导通电阻常关型GaN基HEMT器件制备扣问(国度当然科学基金技俩)
5、面向肺功能评估的离子凝胶栅HEMT湿敏器件扣问(国度当然科学基金技俩)
6、哄骗于脑机接口的新式镓系半导体忆阻器及电路扣问(国度科技部科技改革2030紧要技俩任务)
7、6英寸硅基氮化镓增强型功率器件技巧研发(中央指令地方科技发展专项)
8、氮化镓材料功率器件新结构与要津工艺技巧扣问(辽宁省科技紧要专项课题)
9、900V品级宽禁带半导体氮化镓功率器件要津技巧扣问(辽宁省科技霸术技俩)
10、第三代半导体氮化镓垂直结构功率器件芯片技巧研发(大连市科技改革基金技俩)
11、多重2DEG沟说念和凹槽栅组合GaN MOS-HEMT器件的研制(安徽省当然科学扣问 紧要技俩课题)
12、低导通电阻大阈值电压常关型AlGaN/GaN基HEMT器件制备扣问(辽宁省教悔厅技俩)
13、第三代半导体集成智能检测仪研制止境在结直肠手术中的哄骗扣问(交叉探索科研专题医工交叉联结基金)
14、基于栅极沟说念再助长技巧的GaN材料HEMT器件研制(中央高校基本科研业务经费专项)
15、基于HEMT结构的GaN材料高温霍尔传感器制备扣问(中央高校基本科研业务经费专项)
16、常关型GaN基功率器件的仿真与制作(引进东说念主才专项)
17、GaN材料垂直结构功率器件制作工艺扣问、氮化镓材料垂直结构场效应晶体管研制、氮化镓材料垂直结构功率器件可靠性扣问(滚动支合手多项中科院系统重心实验室课题)等
18、著明企业产学研合作课题
代表性论文:
[34] Z. Sun, J. Dai, H. Huang*, et al., “Improved Breakdown Voltage and Dynamic Ron Characteristics in Normally-off GaN-based HEMTs Featuring Fully-Recessed and Bilayer-Dielectric Gate Structure”, IEEE Trans. Electron Dev. 71, pp. ***, 2024 (SCI, IF=3.22, top).
[33] J. Dai, H. Yu, H. Huang*, et al., “Recess-Free Thin-Barrier AlGaN/GaN Schottky Barrier Diodes with Ultra-Low Leakage Current: Experiment and Simulation Study”, Appl. Phys. Lett. 124, pp. 202102, 2024 (SCI, IF=4.0, top).
[32] Y. Liu, Q. Zuo,×××, H. Huang*, “Synaptic properties of GaOx-based memristor with amorphous GaOx deposited by RF magnetic sputtering”, J. Appl. Phys. 135, pp. 184502, 2024 (SCI, IF=3.2).
[31] H. Huang*, Y. Lei, N. Sun, “Progress of GaN-Based E-mode HEMTs (Invited Topical Review)”, J. Phys. D: Appl. Phys., vol. 57, p. 413002, 2024 (SCI, IF=3.41).
[30] Z. Sun, J. Dai, H. Huang*, et al., “Performance improvement of enhancement-mode GaN-based HEMT power devices by employing a vertical gate structure and composite interlayers”, Semiconductor Science and Technology, vol. 39, p. 055002, 2024 (SCI, IF=1.9).
[29] M. Gao, H. Huang, et al., “A Novel Field-Plated Lateral beta-Ga2O3 MOSFET Featuring Self-Aligned Vertical Gate Structure,” IEEE Trans. Electron Devices, vol. 70, no. 8, pp.4309-4314, 2023 (SCI, IF=3.22, top).
[28] K. Ma, H. Huang*, N. Ding, et al., “Demonstration of High-Performance GaN-Based Hall Sensors on Si Substrate by Simulation and Experiment Verification,” IEEE Trans. Electron Devices, vol. 69, no. 12, pp.7019-7024, 2022 (SCI, IF=3.22, top).
[27] N. Sun, H. Huang*, Z. Sun, et al., “Improving Gate Reliability of 6-In E-Mode GaN-Based MIS-HEMTs by Employing Mixed Oxygen and Fluorine Plasma Treatment,” IEEE Trans. Electron Devices, vol. 69, no. 1, pp. 82-87, 2022 (SCI, IF=3.22, top).
[26] F. Li, R. Wang, H. Huang*, et al., Temperature Dependent Hot Electron Effects and Degradation Mechanisms in 650-V GaN-based MIS-HEMT Power Devices under Hard Switching Operations, IEEE J. Emerg. Sel. Topics Power Electron., vol. 9, pp. 6424-6431, 2021 ( (5年)IF=6.08, top).
[25] Z. Sun, H. Huang*, et al., A Novel Analytical Model for Ohmic Contacts to Planar Devices: Theoretical Design and Experimental Verification, IEEE Trans. Electron Dev. 68, pp. 299-306, 2021 (SCI, IF=3.22, top).
[24] Z. Sun, H. Huang*, et al., Effects of SiON/III-nitride interface properties on device performances of GaN-based power field-effect transistors, J. Phys. D: Appl. Phys., vol. 54, p. 025109, 2021 (SCI, IF=3.41)
[23] H. Huang*, H. Zhang, Y. Cao, et al., High-temperature three-dimensional GaN-based hall sensors for magnetic field detection, J. Phys. D: Appl. Phys., vol. 54, p. 075003, 2021 (SCI, IF=3.41).
[22] Z. Sun, H. Huang*, et al., Improving Performances of Enhancement-Mode AlGaN/GaN MIS-HEMTs on 6-inch Si Substrate Utilizing SiON/Al2O3 Stack Dielectrics, IEEE Electron Device Lett. 41, pp. 135-138, 2020 (SCI, IF=4.82, top).
[21] Z. Sun, H. Huang*, et al., A Novel GaN Metal-Insulator-Semiconductor High Electron Mobility Transistor Featuring Vertical Gate Structure, Micromachines, vol. 10, p. 848, 2020 (SCI, IF=3.52).
[20] H. Huang*, Z. Sun, Y. Cao, et al., Investigation of Surface Traps-Induced Current Collapse Phenomenon in AlGaN/GaN High Electron Mobility Transistors with Schottky Gate Structures, J. Phys. D: Appl. Phys., vol. 51, p. 345102, 2018 (SCI, IF=3.41).
[19] H. Huang*, F. Li, Z. Sun, and Y. Cao, Model Development for Threshold Voltage Stability Dependent on High Temperature Operations in Wide-Bandgap GaN-Based HEMT Power Devices, Micromachines, vol. 9, p. 658, 2018 (SCI, IF=3.52).
[18] H. Huang*, Z. Sun, F. Zhang, et al., Analytical model for accurate extraction of metal-semiconductor ohmic contact parameters using a novel electrode-pair layout scheme, Physica E, vol. 108, pp. 197-201, 2019 (SCI, IF=3.57).
[17] H. Huang*, F. Li, Z. Sun, et al., Gallium Nitride Normally-Off Vertical Field-Effect Transistor Featuring an Additional Back Current Block Layer Structure, Electronics, vol. 8, p. 241, 2019 (SCI, IF=2.41).
[16] H. Huang*, F. Li, Z. Sun, et al., Proposal and Demonstration of GaN-Based Normally-Off Vertical Field-Effect Transistor with a Design of Back Current Block Layer, Key Eng. Mater., vol. 787, pp. 69-73, 2018 (EI).
[15] H. Huang*, Y. Cao, et al., Improved Wide-bandgap Gallium Nitride Hall Sensors for High Temperature Applications, 2019 Collaborative Conference on Materials Research (CCMR), Goyang, South Korea, June 3-7, 2019.
[14] H. Huang*, Z. Sun, et al., Performance-Improved Normally-off AlGaN/GaN High-Electron Mobility Transistors with a Designed p-GaN Area under the Recessed Gate, 13rd IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Hangzhou, pp. 1230-1232, 2016 (EI).
[13] Z. Sun, H. Huang*, et al., Improved On-Resistance and Breakdown Voltage Vertical GaN-based Field Effect Transistors, 13rd IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Hangzhou, pp. 1101-1103, 2016 (EI).
[12] H. Huang*, Z. Sun, Y. Cao, et al., A New Method for Extracting Ohmic Contact Parameters Obtaining the specific contact resistance from transmission line model measurements, 2018 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia, Xi'an, pp. 153-156, 2018 (EI).
[11] H. Huang* and Y.C. Liang, "Formation of combined partially recessed and multiple fluorinated-dielectric layers gate structures for high threshold voltage GaN-based HEMT power devices", Solid-State Electron. 114, 148-154, 2015 (SCI, IF=1.44).
[10] H. Huang, Yung C. Liang, Ganesh S. Samudra, Ting-Fu Chang, and Chih-Fang Huang, “Effects of Gate Field Plates on the Surface State Related Current Collapse in AlGaN/GaN HEMTs”, IEEE Trans. Power Electron. 29, 2164-2173, 2014 (SCI, IF=6.37, top).
[9] H Huang, Yung C. Liang, Ganesh S. Samudra, and Cassandra Low Lee Ngo, “Au-Free Normally-off AlGaN/GaN-on-Si MIS-HEMTs using Combined Partially Recessed and Fluorinated Trap-Charge Gate Structures”, IEEE Electron Device Lett. 35, pp. 569-571, 2014 (SCI, IF=4.22, top).
[8] H. Huang*, Y. Xie, et al., “Growth and fabrication of sputtered TiO2 based ultraviolet detectors”, Appl. Surf. Sci. 293, pp. 248-254, 2014, (SCI, IF=6.18, top).
[7] H. Huang, Y. Xie, et al., “Low-Dark-Current TiO2 MSM UV Photodetectors with Pt Schottky Contacts”, IEEE Electron Device Lett. 32, pp. 530-532, 2011 (SCI, IF=4.82, top).
[6] H. Huang*, W. Yang, et al., “Metal-semiconductor-metal ultraviolet photodetectors based on TiO2 films deposited by radio frequency magnetron sputtering”, IEEE Electron Device Lett. 31, pp. 588-590, 2010 (SCI, IF=4.82, top).
[5] H. Huang*, Y.-H. Wang, et al., "Formation of Gate Structure by Multiple Fluorinated Dielectric Layers on Partially Recessed Barrier for High Threshold Voltage AlGaN/GaN Power HEMTs", 11th International Conference on Nitride Semiconductors (ICNS-11), 2015, August 30 - September 4, Beijing, China.
[4] H. Huang, Y.-H. Wang, et al., “5V High Threshold Voltage Normally-off MIS-HEMTs with Combined Partially Recessed and Multiple Fluorinated-Dielectric Layers Gate Structures”, 46th SSDM 2014, September 8-11, 2014, Ibaraki, Japan.
[3] H. Huang, Y. C. Liang, G. S. Samudra, and C.-F. Huang, “Design of Novel Normally-off AlGaN/GaN HEMTs with Combined Gate Recess and Floating Charge Structures”, IEEE PEDS 2013, April 22-25, 2013, Kitakyushu, Japan.
[2] H. Huang, Y. C. Liang, and G. S. Samudra, “Theoretical Calculation and Efficient Simulations of Power Semiconductor AlGaN/GaN HEMTs”, IEEE EDSSC 2012, December 3-5, 2012, Chulalongkorn University, Bangkok, Thailand.
[1] H. Huang, Y. C. Liang, et al., “Modelling and Simulations on Current Collapse in AlGaN/GaN Power HEMTs”, SISPAD 2012, September 5-7, 2012, Denver, CO, USA.
近三年主要恳求或授权发明专利(部分):
1、黄火林,具有三明治栅极介质结构的HEMT器件止境制备法子,发明专利,ZL201510392175.6,授权公告日:2018.04.10
2、黄火林、梁红伟、夏晓川、杜国同,一种纵向短开启栅极沟说念型HEMT器件止境制备法子,发明专利,ZL201510319284.5,授权公告日:2018.04.27
3、黄火林、孙仲豪、梁红伟、夏晓川、杜国同等,具有纵向栅极结构的常关型HEMT器件止境制备法子,发明专利,ZL201610109041.3,授权公告日:2018.06.19
4、黄火林,兼具栅极电介质和刻蚀屈膝层功能结构的常关型功率器件止境制备法子,发明专利,ZL201910361971.1,授权公告日:2021.01.19
5、孙仲豪(本东说念主博士生)、黄火林,具有极化结纵向泄走电流屈膝层结构的HEMT器件止境制备法子,发明专利,ZL201810789540.0,授权公告日:2020.09.29
6、黄火林、孙仲豪、曹亚庆、李飞雨、胡礼中,一种半导体电极欧姆战争电阻参数索要法子,发明专利,201711344193.2,恳求日:2017.12.15
7、黄火林、孙仲豪、李飞雨、曹亚庆、胡礼中,一种欧姆战争电极灵验宽度的运筹帷幄和判定法子,发明专利,ZL201711401180.4,授权公告日:2021.06.22
8、黄火林、孙仲豪,半纵向型欧姆战争电极止境制作法子,发明专利,201810320840.4,恳求日:2018.04.11
9、黄火林、孙仲豪、李飞雨、曹亚庆、陶鹏程,一种具有局部电流屈膝层的纵向栅极结构功率器件止境制备法子,发明专利,201810790140.1,恳求日:2018.07.18
10、黄火林、李飞雨、陶鹏程、孙仲豪、曹亚庆,一种具有P型埋层结构的增强型HEMT器件止境制备法子,发明专利,ZL201810789995.2,授权公告日:2021.09.14
11、黄火林、孙仲豪,一种高阈值电压常关型高电子迁徙率晶体管止境制备法子,发明专利,ZL201910361958.6,授权公告日:2021.12.31
12、黄火林、李飞雨、王蕃昌、刘晨阳、任永硕、梁辉南,一种细目GaN cascode器件失效位置的测试分析法子,发明专利,ZL201910918010.6,授权公告日:2021.09.14
13、黄火林、孙楠、孙仲豪、赵程,一种场板下方具有蜂窝凹槽势垒层结构的常关型HEMT器件,发明专利,ZL201911355731.7,授权公告日:2021.09.14
14、黄火林、赵程,一种Cascode结构GaN电力电子器件结温快速精准测量法子,发明专利,ZL202110632887.6,授权公告日:2022.06.14
15、黄火林、孙仲豪,一种高阈值电压常关型高电子迁徙率晶体管止境制备法子,海外专利PCT(好意思国恳求阶段),PCT/CN2020/087347,恳求日:2020.04.30